CESEP'19 CONFERENCE

8th International Conference on Carbon for Energy Storage and Environment Protection

October 20 - 24th Alicante (Spain)

ISBN: 978-84-1302-058-7

P72

Photocatalytic degradation of tartrazine using C-doped Cu-/Mo-based catalysts under solar irradiation

<u>Paula Muñoz-Flores</u>^{1,2,3*}, Juan Matos^{1,2,*}, Po S. Poon¹, Alicia Gomis-Berenguer⁴, Conchi O. Ania⁴

¹ Hyb&Car Group, UDT, University of Concepcion, Coronel, Chile
² Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile
³ Faculty of Engineering, University of Concepcion, Concepcion, Chile
⁴ POR2E group, CEMHTI, CNRS (UPR 3079), Université d'Orléans, 45071 Orléans, France

paulamunozf@udec.cl; jmatoslale@gmail.com

Introduction

Considering the high potential of Cu- and Mo-based materials in optoelectronic applications [1,2], the objective of this study was to obtain C-doped Cu- and Mo-based catalysts for the degradation of tartrazine (*aka* yellow 5) -a dye commonly found in food derivatives- and then to optimize the catalyst load necessary for the total conversion of the dye. To attain this goal, a series of photocatalytic tests were performed with increasing catalysts loadings.

Experimental

The catalysts were prepared using a solvothermal method, and were calcined and pyrolyzed before its use. A kinetic adsorption study of the dye (Y5) was initially carried out in dark conditions until equilibrium was reached. Afterwards, the suspension was exposed to irradiation for 6 hours. The photocatalytic tests were carried out using an initial dye concentration of 5 ppm, and catalysts loading of 0.25, 0.5, 0.75 and 1 g/L.

Results, Discussion and Conclusions

The Cu-based catalysts showed up to 40% conversion of Y5, even for the low loadings; in contrast, the Mo-based ones displayed lower activity (ca. 10-20%) and presented an important lixiviation. The bimetallic Cu-Mo photocatalyst showed similar activity to that observed on Cu-based catalysts, but also suffered the lixiviation issues observed for the Mo-derived ones. The pyrolysis treatment enhanced the photocatalytic activity of the Cu-based materials, compared to calcination. The pyrolyzed Cu-based sample was the most active catalyst. For this material, total photodegradation of the dye was obtained after 5 hours irradiation for a loading of 1 g/L, and with an apparent constant rate of 7.3×10^{-3} min⁻¹. For the lowest loading, the apparent constant rate was 2.5×10^{-3} min⁻¹. Summarizing, it can be concluded that carbon-doped copper-based photocatalysts displayed good activity under solar irradiation for the degradation of yellow 5, whereas those based on molybdenum showed lower photocatalytic activity and a high lixiviation under our experimental conditions.

Acknowledgements

The authors thank the financial support of the Franco-Chilean network BIOCval2E (REDES-170004 project), CONICYT PIA/APOYO CCTE AFB170007, the Chilean FONDECYT project 1190591 and Millennium Science Initiative of the Ministry of Economy, Development and Tourism in Chile (grant Nuclei on Catalytic Processes towards Sustainable Chemistry).

References

- Kozlov, Y. A., Dorogov, M. V, Chirkunova, N. V, Sosnin, I. M., Vikarchuk, A. A., Romanov, A. E. CuO Nanowhiskers-Based Photocatalysts for Wastewater Treatment CuO. Nano Hyb. Comp. 13 (2017) 183-189.
- 2. Alam, U., Kumar, S., Bahnemann, D., Koch, J., Tegenkamp, C., Muneer, M. Harvesting visible light with MoO₃ nanorods photocatalytic degradation of organic pollutants. PCCP 20 (2018) 4538–4545.