PROGRAM SCHEDULE CARBON 2019 LEXINGTON, KY - 183 Synthesis of cnt-clay nanocomposite for application in as (iii) removal from water **Yadav** - **193.1** Fabrication of composite material based on multiwall carbon nanotubes obtained on diatomite substrate **Nazhipkyzy** - H2S Oxidation over Atomic Cobalt Modified Nitrogen-Rich Hierarchical Porous Carbon Nanofibers: Efficient Desulfurization and High-Performance Li-S Batteries **Zhao** - 274 Carbon nanomaterials based chemical sensor for chemical penetration in composite Liu - **281** Enhanced flame retardant property of wood-based composite board by addition of graphene nanoplatelet **Han** - Electroconductive effect of starch-based films containing multi-walled carbon nanotubes and plasticized by 1-ethyl-3-methylimidaz olium acetate **Domene-López** - 334 Preparation of carbon nanotube/graphite/epoxy nanocomposite bipolar plates for fuel cells Lee - 346 Co-Cu powders for the production of complex carbon nanostructures: Multiwalled Carbon Nanotubes Decorating Wrinkled Carbon Belts **Fajardo Diaz** - 373 Nitrogen-Precursor Dependence of the Carbon Sponge Production Rodriguez-Corvera - 405 Comparison of conductive nanocomposite sensor for polymer health monitoring: concentration and nanofiller morphology **Fang** - **451** Synchronous growth of CNTs and PyC for fabricating nanocomposites to self-adapting ultra-high temperature ceramic coatings **Kou** - Multiwall carbon nanotubes reinforcing ability in alumina/zirconia hybrid ceramic nanocomposites prepared by hot-pressing **Al Habis** - Research on the Photocatalytic Activity of Activated Carbon Fiber Coated with TiO2 nanoparticles Pei - 84 Study of graphitization behavior of metal-ion implanted precursor polymer Idesaki - 100 Carbon-containing Cu- and Mo-based catalysts for the photodegradation of Yellow 5 **Muñoz-Flores** - Oxygen Evolution Reaction at Carbon Edge Sites: Intrinsic Catalytic Activity Clarified by Polycyclic Aromatic Hydrocarbons **Lin** - 144 Determining the role of pore size in carbons for the photocatalytic degradation of organic pollutants under solar irradiation **Arenillas** - 148 Catalytic hydrodechlorination of chloroform to olefins with Pd supported on activated carbons obtained by chemical activation of lignin **Fernández Ruiz** - 149 Cigarette butt-based porous materials for adsorption/photocatalysis of aquatic pollutants Marques - Study on the active sulfur site of thiomolybdate clusters on carbon nanotubes for hydrogen evolution reaction **Joh** - 182 Modification of carbon supports for promotion the oxygen reduction reaction over spinel electrocatalysts **Kostuch** - Study of the deactivation of carbon-supported mono- and bimetallic catalysts used in the aqueous phase re forming of brewery wastewater **Gilarranz** - 223 Carbon materials with zigzag and armchair edges Yamada ater \nod a :r ube - 284 Biomass derived activated carbon catalysts for the one-step dimethyl ether synthesis from syngas **Rodriguez-Mirasol** - Reduced graphene oxide -supported nanoscale zero valent iron for the removal of the mycotoxin patulin from water **Fullana** - Understanding the Effect of Host Structure between Nitrogen-Doped Ultra-Nanocrystalline Diamond and Graphene-Based Electrodes for Electrochemical Carbon Dioxide reduction **Wanninayake** - 416 Investigation of electro-hydraulic effect on rheological and physico-chemical characteristics of high-velocity oil **Bodykov** - 444 Pollutants removal by photocatalysis on tannin-derived ordered mesoporous carbons Fierro # CARBON-CONTAINING Cu- AND Mo- BASED PHOTOCATALYTSTS FOR THE YELLOW 5 PHOTODEGRADATION Paula Muñoz-Flores^{a,b,c*}, Juan Matos^{a,c}, Po S. Poon^a, Alicia Gomis-Berenguer^d, Conchi O. Ania^d ^a Hyb&Car Group, Biorefinery Department, Technological Development Unit (UDT), University of Concepcion, Coronel, Chile ^b Faculty of Engineering, University of Concepcion, Concepcion, Chile ^c Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Chile ^d POR2E Group, CEMHTI CNRS (UPR3079), Univ. Orleans, Orleans, France *Presenting author's e-mail: paulamunozf@udec.cl #### Introduction Heterogeneous photocatalysis has been recognized as one of the most promising sustainable technology capable of mitigating water pollution by eliminating organic pollutants under solar irradiation. It has been reported TiO_2 is the best photocatalyst, but it has important limitations such as low superficial area and it is limited under solar irradiation because the solar spectrum contains approximately 5-8% of UV light [1]. Consequently, the search for photocatalysts with visible light activity and low-cost becomes a widely researched subject. On the other hand, it has been reported that Cu- and Mo- based photocatalysts have a high photocatalytic potential [2,3], while carbon materials can greatly increase the photocatalytic activity of semiconductors [1]. For this reason, this work proposes the use of solar light and carbon-containing Cu-and Mo-based photocatalysts for the degradation of tartrazine (aka. yellow 5), an artificial colorant commonly used in the food industry. # Materials and Methods The photocatalysts were prepared using the solvothermal method in a two-step procedure. In the first step, the raw samples were synthesized from furfural, copper acetylacetonate and ammonium heptamolybdate. The samples were denominated Cu4, Mo4 and Cu4Mo4. In the second step, a thermal treatment (e.g., calcination at 350°C and 550°C for 2 hours, and pyrolysis at 800°C for 2 hours under N₂ flux of 100 mL/min, 10°C/min) were carried out. The calcined samples were labelled: Cu4-350-O2, Cu4-550-O2, Mo4-350-O2, Mo4-550-O2, Cu4Mo4-350-O2, Cu4Mo4-550-O2, while those pyrolyzed were labelled as Cu4-800-N2, Mo4-800-N2, and Cu4Mo4-800-N2. The photocatalytic tests were performed at 25° C under stirring using 31.5 mg of photocatalysts in 125 mL of dye (Y5) with an initial concentration of 5 ppm (9.36 μ mol/L). The kinetic study was carried out keeping the solution of Y5 during in darkness until equilibrium was achieved. After this, the solution was exposed to irradiation with a xenon lamp during 6 hours. A Lambda 365 Perkin Elmer UV-visible spectrophotometer was used to follow the concentration of the dye. The characterization of the photocatalysts was performed by gas adsorption and diffuse reflectance UV-vis spectra. #### Results and Discussion Figure 1a shows the uptake of the dye in the studied catalysts; as seen, Y5 is mainly absorbed on the pyrolyzed Cu-containing photocatalysts. It seems that the calcination -thus removal of carbon from the catalyst- is responsible of a remarkable loss of adsorption sites in the samples. On the other hand, it can be noted from Fig. 1b that after 6 h irradiation, the pyrolyzed sample is the most active photocatalyst of the Cu-series, with a 40% conversion of Y5. The Mo-based and bimetallic CuMo-based catalysts showed lower photocatalytic activity, as well as lixiviation along the reaction. Figure 1. Yellow 5 (a) adsorption in the dark, and (b) photodegradation kinetics under the studied photocatalysts. # Conclusions Carbon containing Cu- and Mo-based catalysts with varied photocatalytic activity for the degradation of Y5 were prepared. The Cu-based catalysts showed up to 40% conversion of Y5 even at low loadings, while the Mo-based ones displayed lower activity (ca. 10-20%) and presented an important lixiviation. The bimetallic Cu-Mo catalyst showed the activity of the copper, but suffered from an important lixiviation as the Mo-material. On the other hand, the catalysts with the lowest carbon content displayed a poor catalytic activity, indicating the beneficial role of the carbon matrix for the degradation of the dye. ## Acknowledgment The authors thank the financial support of the Franco-Chilean network BIOCval2E (REDES-170004 project), CONICYT PIA/APOYO CCTE AFB170007, the Chilean FONDECYT project 1161068 and Millennium Science Initiative of the Ministry of Economy, Development and Tourism in Chile (grant Nuclei on Catalytic Processes towards Sustainable Chemistry). ## References - 1. Leary R, Westwood A. (2011). Carbonaceous nanomaterials for the enhancement of TiO₂ photocatalysis. Carbon, 39,741–772. - Kozlov, Y. A., Dorogov, M. V, Chirkunova, N. V, Sosnin, I. M., Vikarchuk, A. A., & Romanov, A. E. (2017). CuO Nanowhiskers-Based Photocatalysts for Wastewater Treatment CuO. *Nano Hybrids and Composites Submitted*, 13, 183-189. - Alam, U., Kumar, S., Bahnemann, D., Koch, J., Tegenkamp, C., & Muneer, M. (2018). Harvesting visible light with MoO3 nanorods photocatalytic degradation of organic pollutants. *Physical Chemistry Chemical Physics*, 20, 4538–4545.