Electrospun Nanofibers Using Whole Microalgal Biomass: A Novel Sustainable Approach in the Field of Biobased Composite Materials

<u>Sivashunmugam Sankaranarayanan¹</u>, Jeyson Hermosilla¹,

Francisca Acevedo^{1,2} & Rodrigo Navia^{1,3,4}

¹BIOREN- Scientific and Technological Bioresource Nucleus, ²Department of Basic Sciences, Faculty of Medicine, ³Department of Chemical Engineering, Faculty of Engineering and Sciences, ⁴Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco - 4780000, Chile.

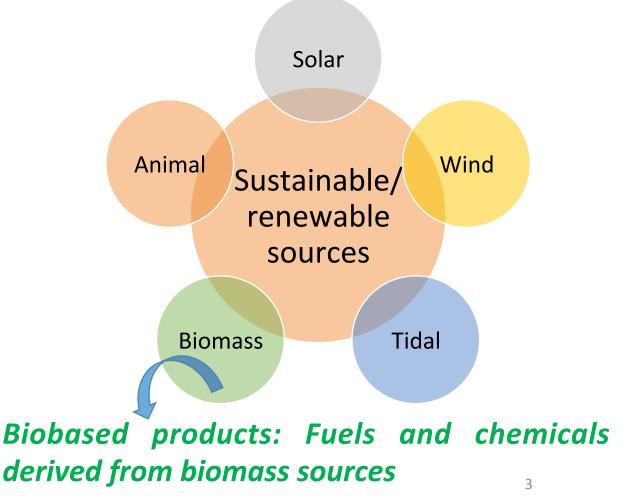
E-mail: <u>sivas.sanka@ufrontera.cl</u>

E-mail: <u>rodrigo.navia@ufrontera.cl</u>

m **14.11.2016**

Outline

Introduction

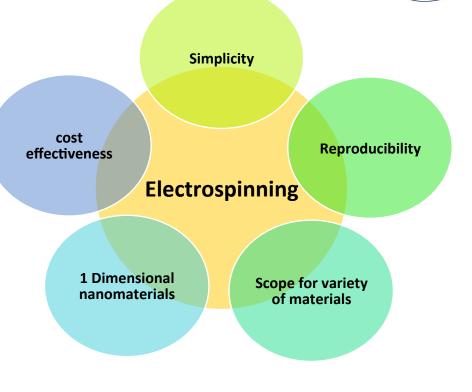

- \circ Sustainable
- Electrospun nanofibers
- *Experimental
- Results and discussion
 - \circ Role of solvents
 - \circ Role of biomass concentration
 - \circ Role of solvent amount

Conclusion

Introduction - Sustainable

- Fossil sources Traditional sources continuous drop and environmental polluting effects
- Alternative to fossil sources Sustainable (are also called as renewables)
- **Biomass** (plant materials) occupies the top place compare to other sources
- Algal biomass sources do not have competition with food crops in land issues – can be efficiently and productively cultivated in less space
- Sustainable sources derived products best replacement for most of the on-going petroleum products - can be produced in bulk to satisfy the overall world's demand

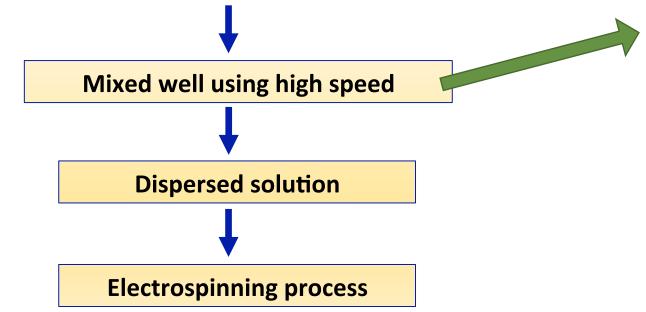
Sustainable: The development that meets the needs of the present without compromising the ability of future generations to meet their own needs



Introduction – Electrospun nanofibers

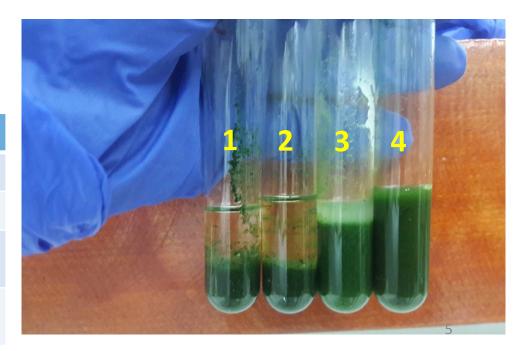
- Nanofibers Fiberic material ranges from micrometer to nanometers - This modification greatly increases the specific surface area, flexibility in surface, functionality and mechanical performance
- Common polymer fibers, polymer fibers loaded with nanoparticles and functional molecules, ceramics fibers and metal/metal oxide fibers
- Organic polymers are one of the major source for nanofibers preparation due to their appropriate viscoelastic behavior in the electrospinning solution
- **Replacement of conventional sources** by biobased molecules for the preparation of nanofibers is of high interest

- Development of nanofibers using completely biosources (whole as well as isolated components) for specific applications
 - Numerous limitations due to their complexed nature

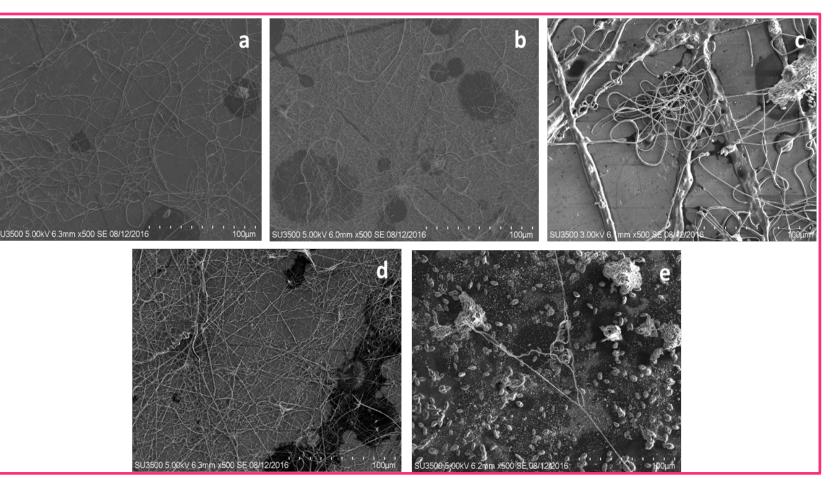


Aim: To use whole microalgal biomass for the development of electrospun nanofibers

Experimental

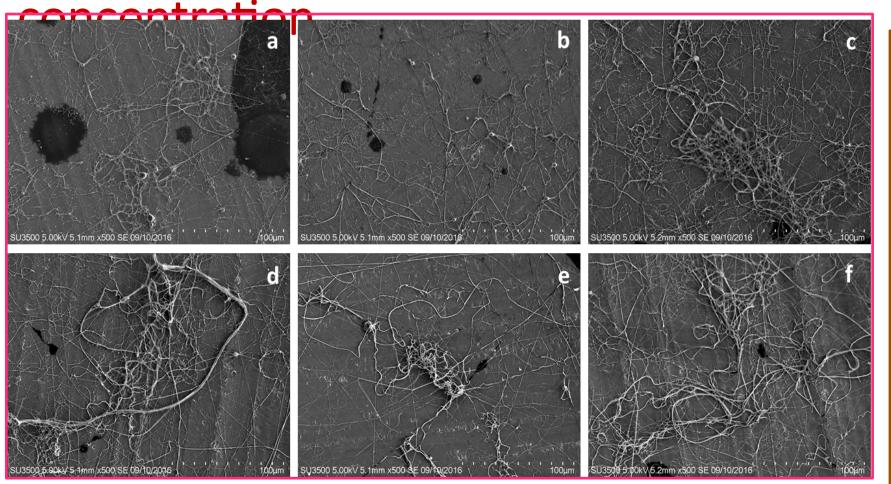


Parameters	Range
Flow rate (mL/h)	1.5 to 3
Temperature (°C)	20
Operating voltage (kV)	+25 (to) +20 ; -3 (to) -4
Collector distance (cm)	20


Solvents used for the study

- Acetone Suspension formed
- Methanol Suspension formed
- Petroleum ether Suspension not formed
- Hexane Suspension not formed
- Chloroform Partially suspension formed
- Ethanol Suspension formed
- Water Suspension formed

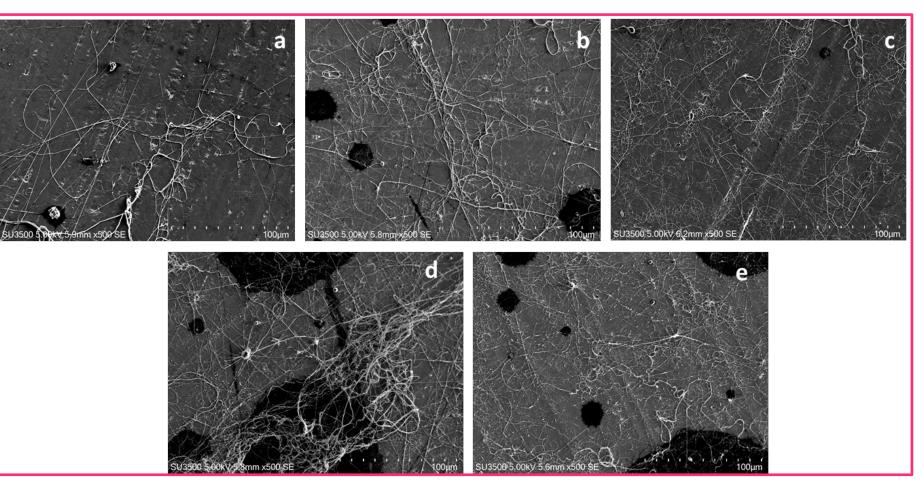
Results and discussion – Role of solvents


Scanning electron microscope (SEM) images of electrospun nanofibers of SA with PEO in presence of different solvents (a) Acetone, (b) Methanol, (c) Chlorofrom, (d) Ethanol, (e) Water

- Acetone, methanol and ethanol were resulted better formation of nanofibers - uniform structures (< 200 nm size)
- Big sized nanofibers were found due to overlapping
- Using chloroform as solvent, no uniformity was found in the nanofibers (size of 560-820 nm)
- Removal of lipids from the biomass by chloroform may leads to the formation big sized nanofibers
- Nanofiber formation was not observed with water solvent - not the suitable solvent for our study

Ethanol was chosen as the solvent for further studies – Low cost and possibility from biosources.

Results and discussion – Role of biomass


SEM images of electrospun nanofibers of SA with PEO with different concentrations of SA (a) 15 wt.%, (b) 12.5 wt.%, (c) 10wt.%, (d) 7.5 wt.%, (e) 5 wt.%, (f) 2.5 wt.% w.r.t. PEO

10wt.% of SA was optimized for further studies.

- The size of the nanofibers range of 120-190 nm till 10 wt.% of SA
- Decrease in the SA concentration less than that resulted the large sized nanofibers (110-390 nm) – Found difficulty in maintaining the suspension due to higher viscosity of PEO – Leads to the precipitation of SA as separate layer while performing the electrospinning
- Also increase in the size of the nanofibers indicating that only PEO was involved in the spinning process
- 10 wt.% of SA is the better concentration for electrospinning of whole biomass with PEO

Results and discussion – Role of solvent amount

Scanning electron microscope (SEM) images of electrospun nanofibers of SA with PEO in different amount of ethanol (a) 1 mL, (b) 2 mL, (c) 3 mL, (d) 4 mL, (e) 5 mL.

- The size of the nanofibers were affected well by the amount of ethanol (range of 100-290 nm)
- Experiments using 1 to 3 mL of ethanol resulted less densed nanofibers
- 4 ml of ethanol resulted highly densed nanofibers
- 5 ml of ethanol resulted less densed nanofibers along with some beeds formation
- 4 ml of ethanol is resulted high densed, uniform nanofibers under the studied conditions

4 mL of ethanol is best for the formation of nanofibers under the studied conditions.

Conclusion

- ✓ Electrospun nanofibers were successfully prepared by using whole biomass (Scenedesmus Almeriensis) with poly(ethylene oxide) as polymer source \checkmark Electrospinning process using ethanol as solvent resulted more dense uniform structured nanofibers with < 200 nm size ✓ Non-uniform and bigger size nanofibers were observed while using chloroform as solvent and this may be due the extraction of lipids from the biomass \checkmark It was found that water is not a better solvent for our study ✓Out of the concentrations studied, 10 wt.% of SA w.r.t. PEO resulted better formation of nanofibers
- ✓4 mL of ethanol as solvent resulted highly densed, uniform sized nanofibers compare to lower amount under the studied conditions
- ✓ Further studies are in progress to get high dense nanofibers with uniform size to evaluate them as active adsorbent materials

Acknowledgements

The 13th Pacific Rim Bio-Based Composites Symposium Bio-based composites for a sustainable future November 13th to 15th, 2016 - Concepción - Chile

This research was funded by CONICYT through FONDECYT Postdoctoral Project 3160392 and FONDECYT Project 11140127

